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Abstract

In this paper we investigate the numerical solution of the two-dimentional Helmholtz
axy-symmetric equation via the spectral method, we reduce this problem of two-
dimentional by using the cilindrical coordinates and we reduce the obtained prblem
to 1-dimentional usig the orthogonal matrix, then the proposed method lood to a
systeme of ordinaries equations are radher simple ..
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1 Introduction

For a generic point (z,y,2z) in IR?® | we consider the Helmholtz problem in Cartesian
coordinates

—Au + ki = } (x,y,2) in Q3 (1)
i =g(z,y,2) on 0f3

where Au = % + giy? + % and by using the cylindrical coordinates (r,0,z) in IR X

|—m, 7] X IR , when the right-hand side f and the boundary g are invariant by rotation,
the two-dimensional reduction reads; [5],

—ANu+u=f(r,z) inQy @)
u=g on 0f)
g 1 2
A, = -0 — ;& — 07 (3)

where ()5 is a regular finite rectangle defined by Qs = A x I = [0,1] X [a,b] and OI the
boundaries of I = [a,b] , f € L3 (), where :

Li( Q) = {f : Q9 — R measurable / (f(r,2))? rdrdz < oo} (4)

Qo

Then the problem (2) is a problem of two space variables, by using the orthogonal
matrix we reduce this problem to a problem of one space variable.
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In this work we construct approximate solutions to the boundary value problem (2)

in the form
N+1

un(r,2) = 3 an(2)alr) 5)
n=1

Where the Lagrangian interpolates [,(r),1 < n < N + 1, are defined at the points
r; € I =10,1],0<i < N and at the points 2; € A = [~1,1], 0 < j < N respectively,

where the points r;, 0 < 7 < N are the collocation points on the Gauss-Lobatto
Legendre grid .

The choice of the form (5) for the solution, added to some technics gives a linear
system which can be written in a matricial form as Aa — 'D?a = I'F, where A
is a square symmetric positive defined matrix and I' is a diagonal invertible matrix
and the operator D? = %. We write a = Pv where P is an orthogonal matrix such
that P~1 (I'"1A) P = C is a diagonal matrix, then we obtain a system of N + 1 ordinary
differential equations, we can use Lagrange’s method of undetermined parameters to solve
for each component v;(z) of v [9], finally we conclude the expressions of functions a,(z)
and for which we obtain the approximation solution.

2 Polynomials

we work in the interval A = [0, 1] and we use the polynomials

On(r) = (EW((T —7r7)"),n =0
occur from the Legendre polynomials with change of variable, each polynomial O,, has
the degree n and in L?(A) satisfies the following property:

1
1
2 _
/0 Oz (r)rdr = 1 (6)
also we use the polynomials
() = (=L () = r2))m > 0 (7)
a(r) = (o () (r = 17)").n 2

has the degree n + 1 and in L?(A) satisfies the following property:

1
1
A? dr = ——— n >
| A = gz 0 0
and we consider the differential equation:
Rl (2) = —n(n+1)L,(2) 9)
where,
ha(2) = (1= 2°) L (2) (10)



3 Variational formulation

3.1 The spaces

The pivot space of the problem (2) is the space L2 ( A), and the variational space is

HL(N) = {v/ a0 e L3 () (1)

and the corresponding norms are defined respectively as,
lol2scn) = /A WErdrds (12)
ol = [ (@ + 0)rar (13)

3.2 Continuous problem

The variational formulation of problem (2) it is written :

find «w € H{(A), with v in H{(A), such that (14)
Vo € HHA), (uz,v)+ ai(u,v) = (f,v)
where the bilinear form a;(.,.) is given by:
1
ar(u,v) = / (0ru0,v + wv)rdr (15)
0

see[7].

4 Discrete space and form

Let us denoted by N the parameter of discretization for the problem (2), in spectral
method N represent the degree of polynomials. The approximate space is essentially
generated by the finite dimensional subspace of L? (A), Py (A) is the approximate space
of the space Hi (A), we consider also the exact quadrature formula and introduce a
bilinear form a;y with approach to the form a; and we approximate the scalar (.,.), for

(...

4.1 Discret problem

Firstly we observe that the products of Lagrange polynomials [,,(r) , 1 <n < N +1, form
a basis of Py (A), then the exact solution u of problem (2) is approached by the solution
uy belonging to Py (A), and the variational problem is:

{ find uy € Py (A), s.t (16)
Von € Py (A), (unzz,on)y +ain(un, vn) = (fa, on) N
where
N
an(un,vn) = Y (Orundron +unow) (e, 2) wy
k=0

where 71, wi, 0 < k < N are defined in propositions 1 .
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4.2 Existence and uniqueness of solution

4.2.1 Weighted quadrature formula

Proposition 1 There exists a unique set of N +1 nodesr;, 1 < j < N+1 wnl,
there exists N + 1 positive weights w; , 1 < j < N 41, such that the following exactness

property holds:

1 N
Vo € Py 1 (I) / p(ryrdr =Y o (r;) w
0 §=0

(17)

wherer; ,1<j < N+1 are the roots of the polynomial ty(r) = (r —r?)Al(r) where

Ay(r) = LAx(r) (7?) and the weights are given by:

1 WN+1

“ne T NN T Ve
4
L= 2< i< N+1
“ T NNt 24 () sJsA

Proof. The proof is similar to the proof in [5]. m

Proposition 2 The polynomial qon_1 with degree 2N — 1 has the form

Gena(r) = (r—rPAR(r) + a (N) (r =) AZ(r)
N +1

where « (N) = m

Lemma 3 The polynomials
tyo1 = (r—rH)Ay_,(r) € Py (A)

verify the double inequality:

3

2 2
lEn—1llzz) < (En-1s tv-1)n < 5 lEnv-1llzza)
where Py (A) is the space of polynomials with degree < N on A.

Proof. Using (21) we find,

_ [T _ (VP -D((N?+2)
Il—/o ty_i(r)rdr = N@NZ—1)

! o o AN(N
Iy :/0 (T —r )AN(T)TdT = SINTD (5\[ _:_S)

1
/ Gn-_1(r)rdr =1 + a(N) I,
0

using the exact quadrature formula then

1 N
13 = / QQN_1<T‘)T’dT' = Zt?v—1(7"i)wi
0

=0
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we conclude that,

2
ltn—1llz2() < (En—1,tn-1)y (26)
let define v s.t 7% > 1 that’s give
v>1
then we can take,
3
773

finally we find I3 < ~I; and then (25) and (26) give the desired result (22) =
Proposition 4 The bilinear form aiy (-, -) satisfy the following properties of continuity:
3
Vox € Py (A),Vuy € Py (A), aw (un,ow)l < 5 lunllmay - lovllmgay — @27)

and ellipticity:
Vuy € Py (A), [arw (un,un)| > [lunlh) (28)

5 Method of solution and numerical implementation

The problem (16) is equivalent to,

%ﬁ(lvzzg—z;;(m ()7 i) o () (2) — (1) (ri ool (2)) = Nzllfna)zn () in .
un (7, z)N:Hg(z) on 0I = d(|a, b))
f(?“, t) = glfn(rnvt)ln (T)a y Tn € ZN-H

(29)
when m vary from 1 to N — 1, we obtain a linear system, then we can write this system
in a matricial form:

Aa—TD*a=TF (30)

where A is a symmetric matrix positive defined with order N — 1, its elements have the
form:

N+1

U = Y (=L (r) = Uy (ri) [ri + L (ri)) o (ri)wi, =1L N =1}, m=1,N — 1
k=1

I' is a diagonal invertible matrix its elements are define as:

Wm ,N=m TN T
’ymn_{()? n#m ,m,n—l,N 1

F' is a known vector where:

F = (fi(2), f2(2), f3(2), vy fv—2(2), fv-1(2))"

and the vector a is an unknown vector where
a = (a1(2),as(2),a3(2), .....,an_2(2), an_1(2))"
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the operator,
d2
D*= —
dz?

multiplying (30) by the invertible matrix I'™* of I then we find
I''Aa— D*a=F (31)

the matrix I'"1 A has positive eigenvalues and there exists an orthogonal invertible matrix
P such that,
P(riA) P=C

where C' is a diagonal matrix, the elements of the diagonal are the eigenvalues «;,i =
1, N + 1 of the matrix I'"' A, if we consider the vector v such that

a= Pv
then the system (31) becomes
(D~'A)Pv— PD* = F (32)
multiplying (32) by the matrix P~ we obtain,
Cv—D*v=P'F (33)

The matricial form (33) has N — 1 linear equations defined as

v (t) — avi(t) = hi(t) (34)
where  hi(t) = = p ' (i,j)Fi(t) ,1<i< N -1

p~1(i,7) are the elements of the inverse matrix P~!. To solve the equations (34) we use
Lagrange’s method of undetermined parameters [9], we may write the solution in the
closed form :
_ — it _ (1/2)
vi(2) = —— [ sinh(p;(z — s))hi(s)ds + c;e #* + diet*, p, = (o) (35)
Hi J -1

where d; and ¢; are constants to be determined, using the boundary conditions then (35)
may be written in the following form:

1 .
1 /% 1 fflsmh(ui(l—s))hi(s)ds .
v;(t) = —— sinh(p; (2 —s))hi(s)ds — — . sinh(pu;(z+1) (36
(t) o (1i(z = 8))hi(s) m b (2/0) (i(z+1) (36)

where

N-1

vi(=1) = X ppiu(rj, —1)
Fo i=TN-1
vi(1) = 3 ppiulry, 1)

1
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poi, n,i = 1, N +1 are the entries of the inverse matrix P~! . Finally we obtain the
functions,

RS T B 1 s (1= 8)h(s)ds
an(t)—;pm( m /_lsmh(ui(z s))hi(s)ds m snb(2)

where p,; , 1 <n,j <N —1 are the elements of the matrix P, using (5) and (36) we
obtain the approximate solution

uny(r,z) = Zmel (—Ml /Z sinh(p;(z — s))hi(s)ds+

n=1 i=1 :u'L [ 1
1 1, sinh(y;(1 — s))hi(s)ds
o sinh(24;)

sinh(p,(z 4+ 1))) Ln(T)

5.1 Error estimate

Definition 5 The polynomial space Py (§22) dense in the space of continuous functions
on Qy hence in H{ () then any function w € H{ (Q2) admits the expansion

u(r,z) = ZZ@ (n,m) Ap(r)hm(2)

n=1m=1

and using (21) and (9) we can write

u(r,t) = 227 (n,m) A (r)Lin(2) (37)

n=0m=1

Proposition 6 The following estimate holds between the exact solution u in Hi (Q3) and
the approzimation solution uy € Py (§22) verify,

lu = unll 20, < aN72|f - Inllz2gay - € is a real positive constant (38)
Proof. Using the ellipticity condition (28) we can write,
|u — UNH?'—I%(QQ) < ai(u—un,u—un)=(f— fn,u—uy)
= 01/ ( (f = fn)(u—uy))rdr , ¢ is a real positive constant  (39)
Q2

using (?7) and (21) and the orthogonality properties we can write

1
Nz §/Q R ()5 rdrdz
2

also
Nz S/Q h3 () terdrdz
2

sinh(p;(2+1)),n

LN —



using (13) we can write

= un iy = 10200 = )y + 190 = )l 2agay + 10— 1) i nf40)
il uliyey < o f (07 = ) =) (41)
< erllu—unlyan IF = Loz (42)

then we find,

Ju — “NHLf(QQ) <aN7?|f - fNHL%(QQ)

this is the desired result. =

5.2 Figure illustration

The figures 1 and 2 present the true and the approximate solution v and uy respectively,

figures 3 and 4 present the true and the approximate function bg(z) = u(r, z), ax(z) =

u(r,z), r = r(k), k = 0,N respectively, figures 5 and 6 present the true and the

approximate function by(r) = u(r, 2), ar(r) = u(r,2), z = z(k), k = 0, N respectively,

these plots occur when N = 10 and the test function is : u(r,t) = rcos (57)) sin(rz).
These plots are occurred when N =10 and (r,t) € [0,1] x [—1,1]

The exacte solution The approximate solution

Figure 1 Figure 2
The exacte functions binz) w=1.N-1 The gpproximate fnctions afnz) n=1LH1
0,3 /\
0,2 \
0,1
-0,1
0,2 \
031 N/
A1 0,5 a 0,5 i
Figure 3 Figure 4



The exacte flanctions byl n=1,N.J The approximate functions afny ) n=i, N 1

0,3 = 03

e el 02‘\\__///
-0,34 = .. ~ —0.3—- =
Figure 5 Figure 6

The behavior of the error n vary from 2 to 10

N 2 3 4 5
Error(N) 0.653 x 107! 0.447 x 1072 0.174 x 1073 0.148 x 1074
N 6 7 8 9

Error(N) 0.608 x 107° 0.159 x 107® 0.747 x 107° 0.185 x 1073

The graphs made by Maple see [6].

Conclusion 7 In this paper the order of the matriz from (N —1)* to (N —1), by
using the technics of the orthogonal matriz , then the solution presented in this method
18 comparably with others methods good ,and give higher accuracy than the finite difference
method and spectral method with two variables.
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