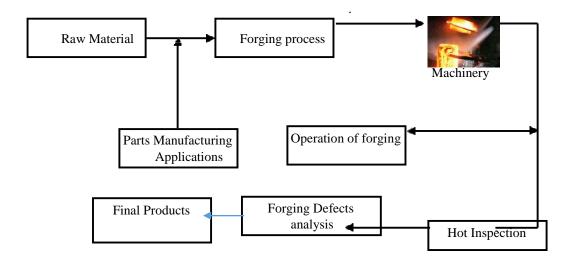
Optimizing In Forging Process Production with Product Development in Hot Forging Process by Development of New Operation designed.

¹ Jadhav Vijay Baban, 2nd Dr. Abhishek Jain, 3rd Dr. Arif Khan

1st Research Scholar, 2nd Associate Professor Mechanical Engineering Department Mats University, 3rd Dr.Arif Khan Registrar National Institute of Technology Raipur.


¹Name of Department of 1st Mechanical,

¹jadhav.vijay2@gmail.com, ²manit.abh@gmail.com, ³arif3456@gmail.com

Abstract— That research gets optimizing production in the hot forging process by adding one new operation in the forging process. forging process various types of defects are carried in regular manufacturing processes such as bending, twisting miss matching, underfill, etc. so in that Paper we consider some process defects which are carrying some critical products such as connecting rods, suspension arm such, and uneven surfaces. Such products have some important parameters considered in the machining and coning process, bending and twisting. Such defects effects on coning die and process and machine tool. In that paper reducing such defects by using some process development with adding additional operations before trimming or after blocking such as hot padding.

Index Terms— Hot padding operation, Die of padding. Bending and Twisting Introduction

Manufacturing process in forging

Figure -1. Manufacturing Process of Plant at initial level

Figure 1 Forging is the process by which metal is heated and is shaped by plastic deformation by suitably applying compressive force. Usually the compressive force is in form of hammer blows using a power hammer or a press. Forging process commonly used in industry and affected by process defects that occur in a forging industry that causes high rejection rate in the components. The five significant parameters such as billet weight, billet length, billet temperature, forging time, and the die temperature were used to optimize and reduce the rejection due to various forging defects. The defects in the forged components includes the lapping, mismatch, scales, quench crack, under filling etc.

The research focus on forging in process defects controlling such as surface defects, Inspection defects, process wastage which in from by flash formation. Focus on improvement of die life by regular corrective action, process defects bending. "

- I Surface defects- 1) Burr lap (Operation defects)
 - 2) Scale Pit (Manual defects)
 - 3) Under Fill (Location, Operation defects)
 - 4) Dent Mark (Manual defects)
 - 5) Punch Mark (Location or misalignment of die)
 - 6) Under Cut (Trimming defects)

II Inspection defects- 1) Mismatch (Die shifting)

- 2) Size Variation (Temperature variation)
- 3) Bend (Operation defects)
- 4) Crack (Overheating and force)

III Process wastage- 1) Cutting operation (End piece)

2) Flash wastage (After Trimming)

METHODOLOGY

Step -I

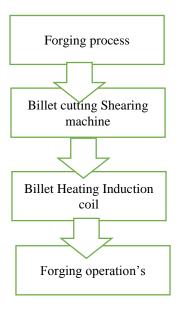


Fig.02 initial process in forging operation

VARAD FORGE PVT. LTD. ENGINEERING									
Sr. No.	Date	Material grade	Heat No	Heat Code	Dia. Ф	Bar Length mm	Total Bar weight KG	Total Bar Qty.	
1	7/5/2016	41CR4	2-NTY-4	IQ	60Ф	5412 MM	10790	91	
2	7/19/2016	EN8D	M54543	B4.1	60Ф	5621 MM	8499	70	
3	7/19/2016	C70S6	K101909	AS	56Ф	4560 MM	18555	170	
4	7/25/2016	41CR4	WIQ	IS	60Ф	4712 MM	10900	98	
5	7/31/2016	C70S6	K097498	AT	56Ф	5540MM	16060	140	
6	8/5/2016	16MNCR5H	K12789	D8.1	60Ф	5416MM	17180	134	
7	8/5/2016	C70S6	K102795	AU	56Ф	5622MM	21760	186	
8	8/5/2016	42CRMO4	K102473	FB5	75Ф	5413 MM	19980	97	
9	8/8/2016	16MNCR5H	M10586	C8.1	75Ф	5416MM	23305	128	

10	8/9/2016	C70S6	K102795	AV	56Ф	5590MM	22900	195
11	8/20/2016	C70S6	K103222	AW	56Ф	5612 MM	25900	220
12	8/21/2016	16MNCR5H	M102998	G7.1	60Ф	5516 mm	15820	124
13	8/21/2016	SAE1541	23494	AA	60Ф	5792 MM	1950	15
14	8/22/2016	41CR4	OEM	JE	60Ф	5412 MM	10580	80
15	8/29/2016	C70S6	K103222/102820	AW	56Ф	4616 MM	25710	230
16	9/3/2016	16MNCR5H	M103692	D9.1	60Ф	4718 MM	20675	163
17	9/4/2016	C70S6	M102820	AX	56Ф	5412MM	25300	240

Table 01 - Shearing machine record.

Step one initial process induction coil selection dependent on raw material diameter and length of cut pieces. That all are initial process which are identification of material and heating process carry in forging process information showing above table . Heating code martial grade heat number and diameter of bar and billet size. Which are importance for next operation of forging process.

Step II-

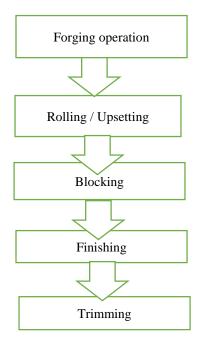
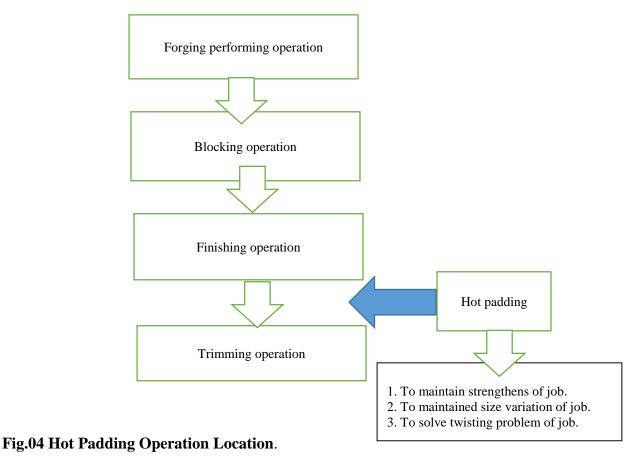



Fig03 General Process In Forging

In forging process drawing operation are carry by rolling operation having basically classified by path on that rolling mills. Basically forging process two, three, four, rolling path operation done. Forging job length are depends on rolling operation. Gap between two rolling mills is the one of important parameter in rolling mills. Upsetting is one of material gather operation in which material flow is done are required shape and size of job. Blocking is one of important operation in which semi fishing work is done by billet material and providing basic shape of job before finishing operation. Finishing are final operation in forging process after that trimming operation performed in which flash get trimmed out.

Product analyses by temperature

In that research paper we consider two product such as connecting rod and suspension arm. Details analyses done by connecting rod products as below. First record the temperature of product by initial to final product. Record temperature of product by stroboscope measurement device which are indirect measurement process.

- 1. Temperature measurement -1. Forging process temperature
 - 2- Trimming process
 - 3. After trimming conveyer temperature.
 - 4. Conveyer Exit temperature.

PART N	NAME : CON	ROD		4	DATE :-		
PART N	NO: LML-TI	OG-P3-03	Con	trol	2/16/2016		
CUSTOMER: LOKESH Mc			Coo	linσ			
VFPL D	ORG NO. : D	106-01					
		Te	mperature M	leasuremen	t (°C)		
				H	Hardness:- 280-285BHN		
Sr.No	IBH	Trimm ing Entry	Conv.Entry	Conv.Exit	Remarks		
1	1182	1066	739	487			
2	1185	998	850	433			
3	1178	1016	762	506			
4	1173	947	826	475			
5	1173	990	727	486			
6	1170	1034	900	494			
7	1174	1004	784	500			
8	1168	989	853	497			
9	1200	1013	722	494			
10	1190	1058	811	483			
Rang e	1100-1150	900- 1050	810-900	500-620			

Table – 02 Temperature measurement

Product analyses by measurement

Product analyses done with the help of connecting rod products. Such product get measurement by two different methods such as after trim component measurement and before trim component measurement. So that after that measurement analyses done by job size variation by both conditions. Three importance parameter's consider Samll end, I –section and Big end of connecting rod.

PART NAME:
CONNECTING ROD

DATE: 14/04/2020

PART NO : LML-TDG-

P3-03

CUSTOMER: LOKESH

MACHINE LTD.

VFPL DRG NO. : D106 Thickness Measurement

	Trim Component											
Sectio n		Saml	I-Section			Big End						
Sr.No.	1	2	3	4	1	2	3	1	2	3	4	Remar ks
1	38.9	39.1	39.1	38.9	19.4	19.2	19.5	39	39.1	39	39.3	
2	38.5	38.8	39.0	38.8	19.3	19.4	19.6	38.8	39	38.9	39.1	
3	39.2	39.4	39.6	39.1	20.2	20.1	20.4	39.9	39.7	39.6	39.8	
4	38.8	39.0	39.0	38.8	19.5	19.5	19.5	38.8	38.9	38.7	39.2	
5	38.8	38.8	38.8	38.8	19.1	19.0	19.2	38.8	38.8	39	39	
6	38.8	38.9	39.1	38.8	19.4	19.2	19.4	38.9	39.1	38.9	39.2	
7	38.8	38.9	39.2	38.8	19.5	19.5	19.5	39.2	39.1	39	39.3	
8	38.8	39.0	39.1	39.9	19.4	19.3	19.5	39.1	39	39	39.2	
9	39.3	39.3	39.4	39.2	19.5	19.4	19.4	39.3	39.2	39.1	39.4	
10	38.8	38.7	39	38.8	19.3	19.1	19.4	38.9	39	38.8	39.1	

	Untrim Component											
Sectio n	Samll End				I-Section			Big End				
Sr.No.	1	2	3	4	1	2	3	1	2	3	4	Remar ks
1	39.6	39.9	39.7		19.9	19.9	19.9	39.8	39.4	39.7		
2	39.6	39.6	39.6		20.1	20.1		39.9	40.0	39.7		
3	39.7	39.8	39.8		19.8	20.0	20.1	39.3	39.8	39.6		
4	39.4	39.2			19.7			39.4	39.6			
7												

Table 03. Analyses of Connecting Rod after Trimming

Small end measurement in that we observed that thickness of job get varied in 38.5mm to 39.6mm with their basic size. Variation are found ± 0.5 mm approximate. Which indicating by bellow graphical presentation.

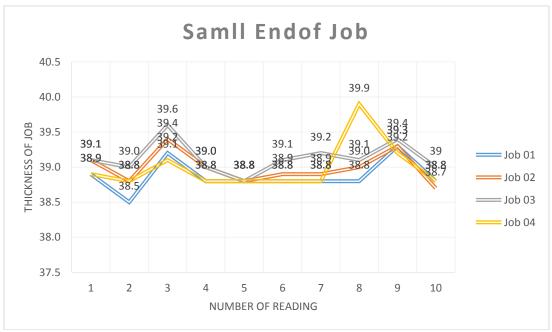


Fig.05 Samll End Measurement

Big end measurement in that we observed that thickness of job get varied in 38.7mm to 39.9mm with their basic size. Variation are found +0.9mm and -0.5mm approximate. Which indicating by bellow graphical presentation.

Fig.06 Big End Measurement

I-Section measurement in that we observed that thickness of job get varied in 19.00 mm to 20.4 mm with their basic size. Variation are found + 1.4mm and approximate. Which indicating by bellow graphical presentation.



Fig.07 I-Section Measurement

Analyses of Connecting Rod Untrim Component

Small end measurement in that we observed that thickness of job get varied up to 39.9mm with their basic size. Variation are found +09. mm mm approximate. Which indicating by bellow graphical presentation.

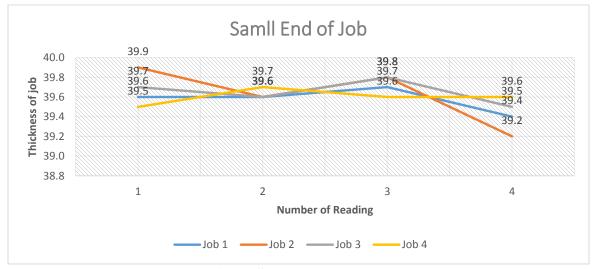


Fig.08 Samll End Measurement

Big end measurement in that we observed that thickness of job get up to 40.2 mm with their basic size. Variation are found +1.1 mm and approximate. Which indicating by bellow graphical presentation.

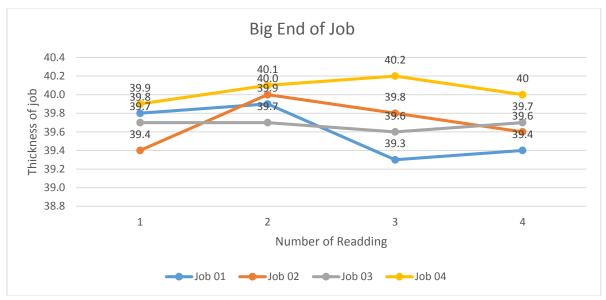


Fig.09 Big End Measurement

I-Section measurement in that we observed that thickness of job get up to 20.4 mm with their basic size. Variation are found + 1.4mm and approximate. Which indicating by bellow graphical presentation.

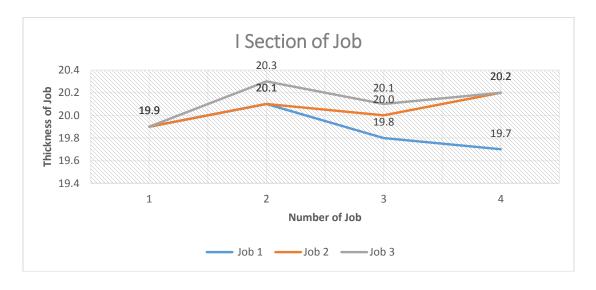
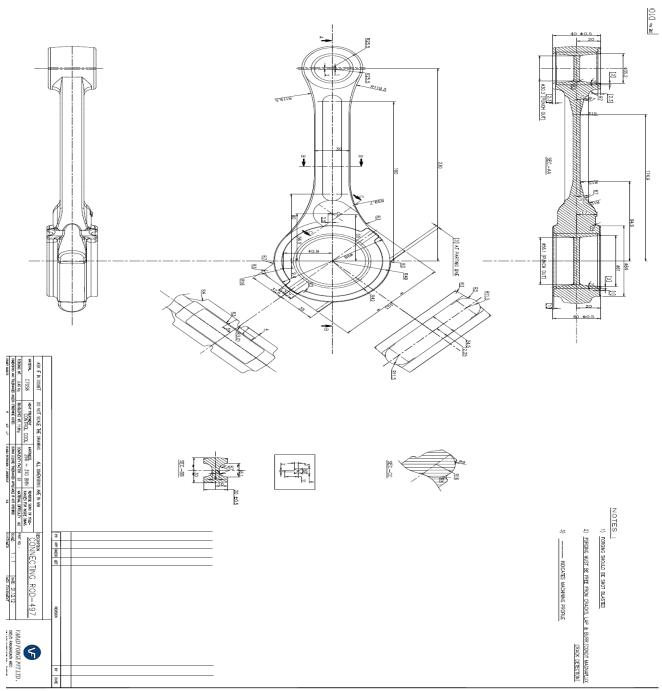



Fig.10 I-Section Measurement

Table 11. Connecting Rod CAD drawing

After that analyses we found some results such as job size get goes under size after trimming but straightness of job get to matinée is very importance so to open some dimensions in trimming die and before that adding one operation to matinee straightness of job such as hot padding operation.

Product analyses by after hot padding opertion

Above analyses of product twsting and size vartion are requried to control by job. Such size vartion are slove by open some trimmming die opertion but size varation of big and small end are not to be control. Such size vartion affacted on further opertion of forging process such as conning opertion.

So controlling such pramerter we adding one addition opertion in reguler forging opertion. Loction of such opertion find by anlyses of job befor and after trim of job. After that diside such opertion are done by berfor trimming opertion so we can done one additional opertion such hotpadding opertion.

- 1. Temperature measurement -1. Forging process temperature
 - 2- Trimming process
 - 3. After trimming conveyer temperature.
 - 4. Conveyer Exit temperature.

PART NAME : CON	ROD				DATE :-						
PART NO : LML-T	DG-P3-0)3	Cantual Caal	4/14/2015							
CUSTOMER : LOKE	ESH Mc		Control Cool	mg							
VFPL DRG NO.: D10	06-01										
	Temperature Measurement (°C)										
	Hardness:-280- 285BHN										
Sr.No.	IBH	Trimming Entry	Conv.Entry	Conv.Exit.	Remarks						
1	1247	1081	920	400							
2	1261	1024	934	398							
3	1252	1103	910	350							
4	1239	1103	860	317							
5	1254	1085	927	314							
6	1241	1100	974	272							
7	1249	1102	930	285							
8	1208	1100	944	329							
9	1219	1098	951	304							
10	1232	1027	902	334							
11	1230	1098	939	330							
12	1203	1118	906	343							

13	1213	1107	900	280	
14	1212	1118	870	317	
15	1251	1107	920	255	
23	1231	1057	918	304	
Range	1200- 1250	1000-1050	900-950	400-450	

Table 04 Temperature Measurement After Padding

Analyses of Connecting Rod after Hot padding operation

Small end and Big end measurement in that we observed that thickness of job get varied in 40.200mm to 39.800 mm with their basic size. Variation are found ± 0.2 mm approximate. Which indicating by bellow graphical presentation.

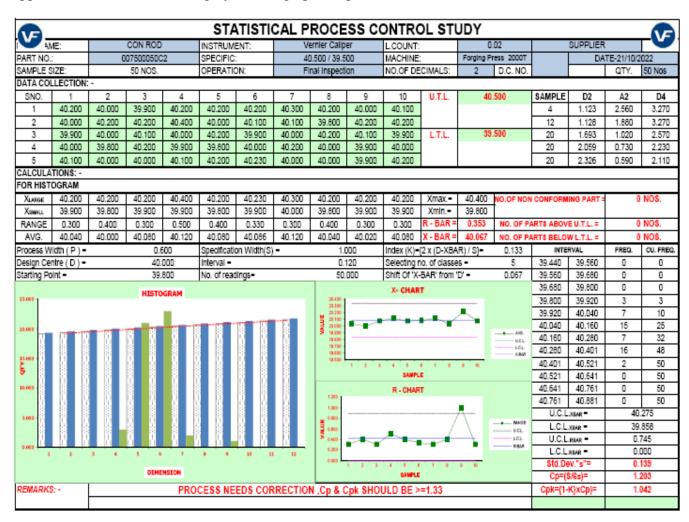


Table 04 after Hot Padding Analyses Of Connecting Rod Big End.

I-Section measurement in that we observed that thickness of job get varied in 19.900 mm to 20.200 mm with their basic size. Variation are found $\pm 0.200mm$ mm and approximate. Which indicating by bellow graphical presentation.

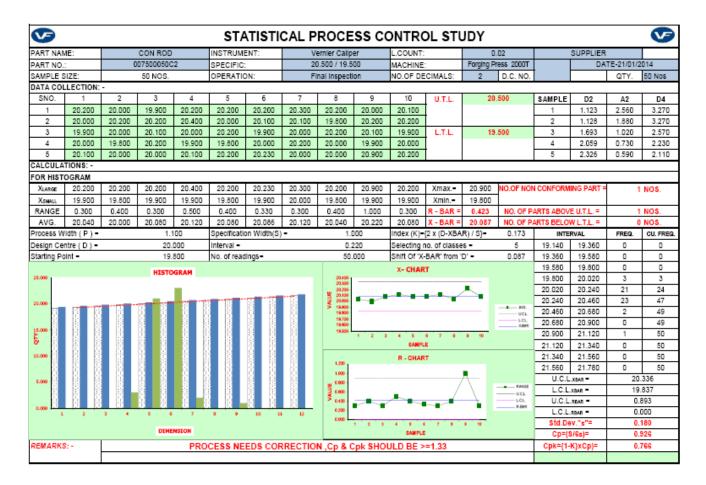


Table 05 After Hot Padding Analyses Of Connecting Rod I-Section Of Job.

Conclusion

After that all analyses data we get some results that are any forging operation product control system done after correction by of forging operation. In that paper we trying to controlling twisting and bending defects in forging operation by adding one new operation. Hot padding is one of the additional operation we adding to control the product defect which are from by forging process.

Bibliography:

1. Marek Hawryluk, Paweł Widomski, Marcin Kaszuba, And Jakub development Of New Preheating Methods For Hot Forging Tools Based On Industrial Case Studies And

- Numerical Modeling Metallurgical And Materials Transactions A Volume 51a, September 2020—4753
- 2. Hawryluk M, Kondracki P, Analysis of the impact of forging and trimming tools wear on the dimension-shape precision of forgings obtained in the process of manufacturing components for the automotive industry. Eksploatacja I Niezawodnosc Maintenance and Reliability 2019; 21 (3): 476–484, .2019.3.14.
- 3. Manish Ranjan1 Rajinder kumar Mahajan Analysis of Forging Defects for Quality Improvement in Forging Industries IJSRD International Journal for Scientific Research & Development Vol. 5, Issue 05, 2017 | ISSN (online): 2321-0613.
- 4. Bruno Buchmayr Damage, Lifetime, and Repair of Forging Dies Lehrstuhl für Umformtechnik, Montanuniversität Leoben, Leoben, Austria Received November 22, 2016; accepted November 29, 2016
- 5. Vipan Chand and Dr. S.S. Sen (2014) "Forging Defects Analysis In Axle Shaft", International Journal Of Advanced Technology In Engineering Science Volume No 02 Issue No 08.
- 6. Suraj Ashok (2015) "Designing A Forging Die For Connecting Rod" International Journal Of Engineering Research And Application (IJERA) ISSN: 2248-9622.
- 7. Mahendra G. R. and Nilesh A.J (2014). "An overview of forging processes with their defects" International Journal Of Scientific And Publication, Volume 4 Issue 6.
- 8. Aju pius T.(2013) "Controlling Measures To Reduce Rejection Rate Due To Forging Defects" International Journal Of Scientific And Publication, Volume3 Issue 3.
- 9. Chandna, P. and Chandra, A. (2009), "Quality tools to reduce crank shaft forging defects: an industrial case study", Journal of Industrial and Systems Engineering, Vol. 3No. 1, pp. 27-37.
- 10. M.G.Rathi and N.A.Jakhade (2014), "An Effect of forging process parameters on filling the job weight::An industrial case study", International Journal of scientific and Research Publications, Vol.4No6.
- 11. M.G.Rathi and N.A.Jakhade (2014), "An Overview of Forging Processes with their defects", International Journal of scientific and Research Publications, Vol.4No6.

12. Mathew, C., Koshy, J. and Verma, D. (2013), "Study of Forging Defects in Integral Axle Arms", International Journal of Engineering and Innovative Technology, Vol. 2No. 7, pp. 322-326.